Regulation of oleosin expression in developing peanut (Arachis hypogaea L.) embryos through nucleosome loss and histone modifications.

نویسندگان

  • Chenlong Li
  • Keqiang Wu
  • Guohua Fu
  • Yin Li
  • Yujuan Zhong
  • Xiaodong Lin
  • Yi Zhou
  • Lining Tian
  • Shangzhi Huang
چکیده

Nucleosome loss and histone modifications are important mechanisms for transcriptional regulation. Concomitant changes in chromatin structures of two peanut (Arachis hypogaea L.) oleosin genes, AhOleo17.8 and AhOleo18.5, were examined in relation to transcriptional activity. Spatial and temporal expression analyses showed that both AhOleo17.8 and AhOleo18.5 promoters can adopt three conformational states, an inactive state (in vegetative tissues), a basal activated state (in early maturation embryos), and a fully activated state (in late maturation embryos). Chromatin immunoprecipitation assays revealed an increase of histone H3 acetylation levels at the proximal promoters and coding regions of AhOleo17.8 and AhOleo18.5 associated with basal transcription in early maturation embryos. Meanwhile, a decrease of histone H3K9 dimethylation levels at coding regions of oleosins was observed in early maturation embryos. However, a dramatic decrease in the histone acetylation signal was observed at the core promoters and the coding regions of the two oleosins in the fully activated condition in late maturation embryos. Although a small decrease of histone H3 levels of oleosins chromatin was detected in early maturation embryos, a significant loss of histone H3 levels occurred in late maturation embryos. These analyses indicate that the histone eviction from the proximal promoters and coding regions is associated with the high expression of oleosin genes during late embryos maturation. Moreover, the basal expression of oleosins in early maturation embryos is accompanied by the increase of histone H3 acetylation and decrease of histone H3K9me2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peanut (Arachis hypogaea L.) Omics and Biotechnology in China

Peanut is one of the most important crops in the world, both for vegetative oil and as a protein source. Biotechnology approaches provide promising ways to increase peanut productivity, either through improved seed quality or stress resistance. These approaches require the identification of genes that control important agronomical traits, the understanding of gene regulation and metabolic pathw...

متن کامل

Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea

Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunobl...

متن کامل

Response of yield and some physiological traits in peanut (Arachis hypogaea L.) to Zn and Ca nano chelates and their application methods

Peanut is one of the important legume crops and its grain rich in oil (47-53 %) and protein (25-36 %). Peanut has very high nutrient requirement, Hence, in order to evaluate the effects of Zn and Ca nano-chelates and their application methods on yield and some physiological traits in peanut, a field experiment carried out in 2016 cropping season as split plot arrangement based on randomized com...

متن کامل

Identification and Characterization of microRNAs from Peanut (Arachis hypogaea L.) by High-Throughput Sequencing

BACKGROUND MicroRNAs (miRNAs) are noncoding RNAs of approximately 21 nt that regulate gene expression in plants post-transcriptionally by endonucleolytic cleavage or translational inhibition. miRNAs play essential roles in numerous developmental and physiological processes and many of them are conserved across species. Extensive studies of miRNAs have been done in a few model plants; however, l...

متن کامل

Serine/Threonine/Tyrosine Protein Kinase Phosphorylates Oleosin, a Regulator of Lipid Metabolic Functions1[OA]

Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A2 activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 60 15  شماره 

صفحات  -

تاریخ انتشار 2009